
NASA-CR-190737

f

p-

,,//7
/

A TWO-LEVEL STRUCTURE

FOR ADVANCED SPACE POWER SYSTEM AUTOMATION

Final Report

Kenneth A. Lopa_and Vira Chankong

Principal Investigators

Igor Vaks, Michael Talbot, and Jack Martin
Graduate Students

Department of Systems Engineering

Case School of Engineering

Case Western Reserve University

Cleveland, Ohio 44106-7070

Submitted to

NASA Lewis Research Center

Power Technology Division

Aerospace Technology

21000 Brookpark Road

Cleveland, Ohio, Ohio 44135

ATYN: Dr. Karl Faymon and Mr. Jim Kish

Grant No.: NAG3-800

June 1987 - May 1990

==i_ °

,.0
rM

I ,-- I_

o" _z ,-.-i
Z =_ 0

o

C

J.J

kz.I u.J 0

O e-- v

k-Ld _

,_ Z t,l.C_"

,-, t:3 C3

I"- t_ ,< _Z 0
OC) I_ >
_ kk, C3 I "-

I _J_

Z _-- >-- _

TABL_ OF CONTENTS

1. Introduction

2. Proposed Two-Level Structure

3. Work Accomplished

4. Concluding Remarks and Recommendations for Future Work

5. Cited References

1

2

2

10

12

Figure 1

Figure 2

Figure 3

Figure 4

13

14

15

16

Attachment 1

An Illustration of Fault Detection and Diagnosis

Using State Estimation, Alarm Processing, Trouble

Call Analysis, And Quantitative Data 1.1-1.7

Attachment 2

Space Power System Prototype: A Simulation Model 2.1-2.8

Attachment 3

An Illustration of How to Use Pascal Version of Fault

Detection And Diagnosis System Based on the DET model 3.1-3.15

Attachment 4

Operating Replacement Units (ORUs) 4.1-4.14

Attachment 5

Special Connection Blocks 5.1

Attachment 6

Functions and Features of FAULTS 6.1-6.9

A Two -Level Structure for Advanced Space Power System Automation

Final Report

1. INTRODUCTION

This report describes the work accomplished during the three year period of the

project from 1987 to 1990.

The overall goal of the project is to investigate the use of a two-level structure

for fault detection and diagnosis of space power systems. The proposed hierarchical

structure consists of model-based algorithmic procedures augmented by production rule

type procedures at the lower level and more sophisticated problem solving and

reasoning strategies at the higher level. This is deemed an appropriate framework for

building fault detection and diagnosis schemes for space power systems for various

reasons. Power systems are integral components of a spacecraft. They must operate

reliably and efficiently. Any potential or incipient faults must be detected and diagnosed

quickly and accurately so that appropriate remedial actions can be taken. Speed,

accuracy, and the ability to access, integrate and interpret information from diverse

sources are essential attributes of the power system fault detection and diagnosis system

aboard a space craft. It is in response to such key attributes that the proposed two-level

structure holds the most promise. In the events of disturbances and contingencies,

quantitative data are gathered and analyzed with speed and precision at the appropriate

level of technical detail by the lower level components. Priority loads are then

determined and services to them maintaine_d, The higher level components integrate

results from the lower level with other qualitative information and develop modified

strategies to improve the long term performance and survivability of the system. The

intelligence of the system lies in this higher level where learning, sophisticated reasoning

and creative strategy development take place. Thus the proposed two-level structure

provides an ability to balance detailed analysis with innovative problem solving. The

right mix will, of course, depend on the problem encountered.

Following the basic ideas outlined above, we identified the following tasks to be

carded out during the three-year project period: 1)performing extensive simulation using

existing mathematical models to build a specific knowledge base of the operating

characteristics of space power systems; 2) carrying out the necessary basic research on

hierarchical control structures, real-time quantitative algorithms, and decision-theoretic

procedures; 3) developing a two-level automation scheme for fault detection and

diagnosis, maintenance and restoration scheduling, and load management; and 4) testing

1

and demonstration. The first task was carried out in Year 1. Tasks 2 and 3 occupied

Year 2 and most of Year 3. Demonstrations of the developed system were carried out

during the end of Year 3, and preparation to test the system on the Testbed at LeRC

was made. The project ended before such testing could be completed.

The remainder of this report is Organized as follows. Section 2 outlines the

proposed system structure that served as a master plan for this project. Section 3

describes work accomplished. Section 4 provides concluding remarks and ideas for

future work.

2. PROPOSED TWO-LEVEL STRUCTURE

Figure l(a) and l(b) show the proposed system structure under investigation in

this work. The fault detection and diagnostic part contains six functional block which

can be grouped into two stages. The fault detection and identification stage is composed

of four blocks that determine what is wrong with the power system without specifying

any corrective action. These may include state estimation, alarm processing, trouble call

analysis and system diagnosis. The isolation stage, which is responsible for the synthesis

of the corrective actions to rectify an abnormal operating situation, is performed in the

system operating policy and remedial action selection blocks. This structure effectively

integrates the myriad of quantitative and qualitative information which is, or will be,

available. It should be noted that the aim of this tool is not to exclude the system

operator: instead, it is to assist the operator in the performance of real-time monitoring

and decision making. A more detailed description of these components and an

illustration of how they work are given in Attachment 1. This research focused on fault

detection and identification aspects of this structure as opposed to the isolation aspect.

In Figure l(a), in addition to the six functional blocks mentioned above, there is

a supporting block and a related functional block. According to our proposed two-level

scheme, a knowledge-base is an important "supporting" block. The load scheduler is a

related functional block which is closely linked to the system operating policy, and can

thus provide useful information to and benefit from the fault detection and diagnosis

blocks. Figure l(a) shows typical information flow among various blocks. Figure l(b)

shows information flow from various blocks to the knowledge-base during the learning

or knowledge acquisition phase. Attachment 1 illustrates typical information that may be

available and how it might be used to perform fault detection and diagnosis.

3. WORK ACCOMPLISHED

Year 1:

It is clear from Figures l(a) and l(b) that the knowledge base is an integral

2

component of our proposed system structure which includes the use of expert system

techniques in the system diagnosis and load scheduler blocks. But since the design of

space power systems was, and still is, on-going, such knowledge was not readily

available. The first year work was therefore devoted to building the necessary

knowledge-base through simulation.

At the time when this task was initiated, the best available mathematical model

of a prototype system was the model of the Direct Energy Transfer (DET) spacecraft

power system (Figure 2) developed by a team from Virginia Polytechnic Institute and

State University [1]. The DET model consists of basic electric circuit models of a solar

array, a simple battery charger and a discharger, a shunt regulator, cable/filter, and DC

resistive load. Although computer programs written in EASY5 of the above components

were available, it was decided to carry out the simulation in Turbo Pascal 4. This is due

partly to accessibility and partly to greater flexibility of the input interface of Turbo

Pascal. For example, variations in load profile, illumination, and/or temperature over

the entire orbit (or planning horizon) could be easily entered and manipulated

graphically through the screen interface. These features were particularly useful in the

simulation exercise carded out subsequently.

Later in January 1988, a Rocketdyne report on Power Management Control for

the Power System Testbed [2] became available. This report built on the DET model by

refining existing component models and adding other components to make it more

realistic in the context of space power systems. Components that were improved were

switching shunt units for regulating power generated by solar arrays, the battery charger

and discharger and their control units, and Some power management distribution and

control units. Additional components included a solar dynamic unit to provide an

alternative form of power generation, DC and AC transmission lines, remote bus

isolators (RBIs), and remote power control (RPC) (protective devices in the instance

of transmission line faults), DC-to-20MHz inverter, load converters (AC-to-DC and

20MHz-to-l.4KHz), and battery. Several of these components were still primitive and,

according to the report, would be improved upon when more design information

became available. For example, at the time when the Rocketdyne report was written,

TRW and GD were still improving their designs of the DC-to-20MHz inverters.

The original simulation models, implemented in Turbo Pascal, were refined

based on the Rocketdyne document. Component models of the battery charger and

discharger and their control units were improved, the battery model was added, and

other components were included.

Each component model described above, with the exception of the battery model,

produced transient behavior which reached steady-state in milliseconds. The battery

3

model, on the other hand, took several hours for charging and discharging operations
between its minimum and maximum allowable charge levels. This marked difference in

time scales, plus the fact that one complete orbit takes about 90 minutes, indicated the

need for a hierarchical approach for integrating component models for simulating the

operations of the prototype space power system during one or more orbits. We adopted

a simple hierarchical structure as illustrated in Figure 3(a) which consists of models

operating at essentially two time scales. The time scale used in simulating the

component models was in milliseconds, whereas the time step used in the orbit level

and battery models was in minutes or hours.

Figure 3(b) illustrates how the proposed orbit-level model works. Assume that at

a particular time instance during the orbit (e.g. time A in Figure 3(b)), the system is

operating at a steady state level. Assume also that, at time B, the power load profile

drops sharply from one steady state level to another. The component models are
executed at this time instant. But since the load power is not constant during C and D,

no steady state may be found before D is reached. One obvious strategy is to run the

component models continuously from C to D. This, however, may be computationally

very taxing particularly if the time interval between C and D is long. To overcome this

difficulty, we proposed the use of interpolation. The component models are first

activated at C until a definite trend of all the relevant operating characteristics is

obtained. The models are then reactivated_t D to determine a new steady state level.

A linear interpolation is then used where the change is occurring at a linear rate, the

component models may be run at a few intermediate points and piecewise linear

interpolation may be used to join these points.

There are thus two main functions of the orbit-level model: one is bookkeeping

(keeping track of changes), and the other is interpolation. These two functions were

incorporated in the model. Another possible function, which could be investigated in

future work, is the interface with the PMAD and other control units (e.g. a load

scheduling unit which was developed in a related research project).

All components described above were packaged into a complete simulator with a

user's manual (See Attachment 2). This simulator was then used to perform the

necessary simulation work. Attachment 3 shows typical simulation runs and results. The

primary goal of this exercise was to build a specific knowledge base of the operating

characteristics of space power systems for the subsequent work on fault detection and

diagnosis. The simulation results were used to learn how each component and the

system as a whole would operate under normal as well as faulted conditions, By "fault"

in this case we meant not only an electrical fault but also an equipment failure and all

other contingencies. A consultation meeting was convened between the project team and

experts at NASA Lewis Research Center to discuss possible "faults _ that might arise

during the operation of space power systems. Since the design of the prototype system

was, at the time of the meeting, (and still is) on-going and not much was known about

faults, it was recommend that the project team develop, in consultation with NASA

personnel, a generic list of faults based on terrestrial experience and the Rocketdyne

report. Such a list was compiled (See Attachment 2, p.6) and was used to perform

simulation experiments. The results of these experiments highlighted the functional

behavior of individual components as well as their interactions under normal and

faulted conditions. This information was organized into a rule-based knowledge system.

The use of this system in performing fault detection and diagnosis tasks is described in

Attachment 3.

Year 2:

The DET model used to develop a knowledge base as described above was seen

to be too simplistic to serve as a base for developing a useful and realistic fault

detection and diagnosis system for space power systems. It was used because it

represented the best model available at the time. Through our first year experience, we

felt that until a relatively stable design of the space power system was available and

many of the performance and failure chara_eristics of such system were properly

understood, it would not be a well spent effort to investigate specific algorithms for an

effective integration of the four fault detection and identification components as

originally planned. On consulting our project manager at LeRC, the research plan for

the rest of the project was slightly revised: we concentrated our efforts on the

construction of a more powerful and more realistic device to help learn about faults of

space power systems, and on how to combine such a device with appropriate

quantitative algorithms to create a useful fault detector and diagnoser for a given design

of a space power system. The key feature of this revised project goal is that whatever

system we develop, it must be adaptable to any final design of the space power system.

Accordingly, we spent the remaining time of the project designing, developing,

testing and demonstrating a computer-based system called FAULTS that can be used to:

* graphically BUILD a space power system to any desired configuration and any

level of complexity for the purpose of analyzing reliability and power flow of the

whole power system as well as its components;

" LEARN failure characteristics of the power system under various operating states

of its components and subsystems by performing reliability analysis and power

flow analysis;

* GENERATE recognizable fault patterns and TRAIN the system to recognize

such patterns;

* PERFORM fault detection and diagnosis based on the training obtained.

5

Thus the system we sought to develop was a computer-aided tool that consisted

of a SYSTEM BUILDER that would allow the user to easily build a space power

system customized to any specific configuration, a KNOWLEDGE GENERATOR that

would identify and learn about possible "patterns" of faults and their likelihood through

a system Reliability and Power Flow Simulator (RPFSim) and a fault patterns

identifier/trainer, and a FAULT DETECTOR AND DIAGNOSER (FD&D). Year 2

was spent on designing the system and on building the foundation for SYSTEM
BUILDER and RPFSim. The final work on SYSTEM BUILDER and RPFSim, and the

remaining pieces of the system (the fault patterns identifier/trainer and the patterns

identifier/trainer and FD&D) were completed during Year 3 along with the testing and

demonstration of the complete system.

The information used to build the system reliability and power flow simulator

(RFPSim) along with the associated SYSTEM BUILDER is from a 1987 NASA

document called the Power System Description Document (PSDD) [3] which

represented the latest design information of the power system for Space Station

Freedom at that time. The goal was to build a tool for assessing the reliability of the

complete power system and its individual components and to simulate the power flow

through the system. Reliability is a measure of the ability of the power system to deliver

a given level of power after it operates for some time period without external
disturbances or contingencies. Specifically, based on the design specifications on mean-

time-between-failures (MTBF) of various components and on the proposed

interconnections among components, the proposed simulator could calculate the

probability that a given level of power will be delivered by the system during an

operating period without external disturbanges. Reliability of a system therefore depends

on the design specifications of its components (MTBF, failure distributions, and mean-

time-between-repairs MTTR), and the ages and interconnections of these components.

For the purpose of reliability analysis and the associated power flow simulation,

the Reliability Block Diagram (RBD) is used as the underlying modeling method. Using

RBD, the overall system is represented by interconnections of blocks (representing

subsystems, assemblies, subassemblies etc.), where each block itself may be comprised of

interconnections of lower level blocks, etc., down to the most primitive blocks

(representing the smallest replacement units of the systems). Figures 4(a)-4(d) show,

respectively, the reliability block diagrams of the overall power system of Space Station

Freedom as envisioned at that time, the photovoltaic (PV) subsystem, the solar dynamic

(SD) subsystem, and the Power Management and Distribution (PMAD) subsystem. The

smallest units (components used in these RBDs) are the proposed Operating

Replacement Units (ORUs). Each ORU, which contains electrical, mechanical and/or

thermal components serving a common purpose, represents the smallest replaceable unit

in the power system. MTBFs and failure characteristics of these ORUs are design

6

specifications given in the PSDD [3]. Two or more ORUs make a subassembly, two or

more subassemblies make an assembly, and two or more assemblies make a subsystem.

A brief description of ORUs, subassemblies and assemblies (electrical or otherwise) is

given in Attachment 4.

The RBDs shown in Figures 4(a)-4(d) are the results of several iterations of

refinements with the advice and updated information provided by David Hoffman of the

Systems Engineering and Integration Division, Systems Engineering and Analysis

Branch, NASA/LeRc. The interconnections used in the RBDs of Figures 4(a)-4(d), and

hence in SYSTEM BUILDER and RPFSim are the traditional series connections,

parallel connections, star or delta connections, bridge connections, and any combinations

thereof. Methods for analyzing reliability of blocks connected by these interconnection

schemes are well documented in the literature. For the specific application to space

power systems, it was necessary to include modified (partitioned) parallel connections to

allow more accurate and convenient representations of solar arrays, battery packs, and
thermal radiators. These connections are discussed in Attachment 5.

Associated with a block is a reliability description (e.g. MTBF, MTTR, and

failure distributions) and an input-output description (e.g. input power - output power

relationships during sunlight and eclipse cycles): the former is used for reliability

analysis while the latter is used for throughput (e.g. power flow) simulation. In general,

only the information for the primitive blocks need be provided by the user. The relevant

description of each "derived" block are computed from the information in the lower

level blocks.

There are two distinct features that set the RBDs in Figures 4(a)-4(d) apart from

ordinary RBDs. First, the failure characteristics of some ORUs depend not only on their
own failure characteristics but are also conditional on other ORUs. The ORUs with

such properties are indicated in the diagrams by stars (*). Second, is the need to

introduce a "partitioned" series connection. This feature arises only subsequent to

simplification of a parallel connection (described in Attachment 5). An example is the

series connection of ORUs 101 and 102: the output delivered by a component in this

connection depends not only on its own failure characteristics but also on the failure

characteristics of the preceding partitioned parallel connection.

As said earlier, due to the expected continual improvement and revision of the

design of the space power system for Space Station Freedom, a key criterion in

designing SYSTEM BUILDER and RPFSim is flexibility---an ability to quickly and

conveniently accommodate changes and reconfigure the system.

Because of the desired flexibility and because of the distinct features of the

7

RBDs described above, a modular object oriented approach is adopted in designing

SYSTEM BUILDER and RPFSim. The RBDs are viewed as simple series and parallel

connections of primitive units. A primitive unit is either a normal block or a special

block. A special block is either a group of ORUs connected by one of the modified

parallel or series connections or a conditional ORU described above. A special

computational rule is developed for each primitive unit in addition to general

computational rules for ordinary series and parallel connections of primitive units. With

this modular approach, it is therefore capable of assembling and reassembling ORUs

into primitive units, and primitive units into a module or the overall system. Future

design changes of the power system can thus be conveniently accommodated. RPFSim

will also provide an effective tool to experiment with various system configurations for

design purposes.

Based on these RBDs, SYSTEM BUILDER and RFPSim were developed and

implemented in LISP on the TI Explorer. Object oriented programming on the TI

explorer was chosen as the environment to develop this simulator. Because of the

symbolic computing and graphic capabilities, an interface with FAULT DETECTOR

AND DIAGNOSER was developed. SYSTEM BUILDER allows the user to create and

modify RBDs through a graphic interface, adding yet another important attribute to

enhance its potential.

In summary, SYSTEM BUILDER and RPFSim form a powerful device which
can be used to:

simulate system/equipment failures under normal operating conditions;

study the effects of an equipment failure on the performance (failure) of other

equipment and of the whole system;

simulate system/equipment failures under various operating conditions, when

combined with a model of external disturbances;

study the performance of various design specifications (MTBF) of components

and other design aspects;

generate prior probabilities of failures for use in any Bayesian-based information

fusion scheme for fault detection and diagnosis.

The first three items above will help improve our knowledge base (by acting as a

"trainer") and generate data useful for testing the fault detection and diagnosis scheme
to be discussed next.

Year 3:

The work in Year 3 was mainly to complete the development and refinements of

8

SYSTEM BUILDER and RPFSim, and to develop the fault patterns identifier/trainer

and the FAULT DETECTOR AND DIAGNOSER (FD&D) itself. Testing and

demonstrations of the complete system FAULTS were also conducted at LeRC.

The fault patterns identifier/trainer that was to be developed would take all

available information relevant to the detection and diagnosis of faults, and combine

these information in such a way that the result would be useful for detecting and

diagnosing faults. For a general engineering system, typical information that may be

available includes scientific understanding of how various components work individually

and together as subsystems and the system as a whole; expert knowledge gained from

experience through similar systems or situations; and past records of faulted states which

show possible faulted conditions, their likelihoods and their associated observable

symptoms. The first two types of information above could be purely qualitative or a

mixture of qualitative and quantitative, whereas the third type is mostly quantitative. For

the case of space power systems, good scientific knowledge and expert knowledge were

minimal at the time of this research project due to the fact that the system was still in a

preliminary design stage and no previous experience of similar systems existed. With

SYSTEM BUILDER and RPFSim, the third type of information could be easily made

available through a well planned simulation. Accordingly, the fault patterns identifier

and the subsequent FD&D were developed based solely on this type of information. We

left the question of how to incorporate qualitative information for future work, since a

suitable procedure would depend very much on the specific form of the qualitative data

available.

As used in our earlier Pascal version (see Attachment 3), the quantitative

technique used to identify fault patterns based on a sample of simulated past records is

a self-organizing (memory) network [4,5]. To make the description more concrete, we

assume the following situation: A complex system consisting of many components (e.g.

the space power system) is operating. Sensors (e.g. RPBs) are placed at strategic

locations throughout the system to measure key variables (e.g. bus and load voltages

and currents). The operator observing these sensor readings must determine whether

there is a fault in the system, and if so, where. We assume that a sample of (simulated)

past records have been generated using RPFSim. Each record consists of a set of sensor

readings (e.g. measurements of voltages and currents at RPBs in the power system), and

a description of the corresponding actual operating states of all the faulted ORUs,

subassemblies, and assemblies. The basic idea is to use generated past records as a

trainer to classify those records into groups based on some measure of "similarity": two

records will be put into the same group if the sets of sensor readings in the two records

are "similar". Recognizable patterns of faults within each group are then identified for

further use in the fault detection and diagnosis. In this work, the measure of similarity

between two records is measured by a weighted distance between the two records.

Specifically, record i---(sil, s_,s_,) and record j---(sil, sj2......sin), n being the number of

sensors used, are similar if the weighted distance dij(w) = dij(wx,w2,...,wn) = Ewkl Sik-Sjk12

is sufficiently small, where w k is the relative weight assigned to the reading at sensor k.

A self organizing network was used to classify simulated past records. This is an

iterative procedure for adjusting the set of weights w = (wl,w2,...,wn) until distinct and

meaningful groups are formed. The distance d of any pair of records in the same group

is relatively small compared to the distance between any two records taken from two

different groups. When a record consists only of two sensor readings (sl, s2), it can be

represented as a point in a plane with wlS 1and w2S2 serving as the coordinates for a

given set of weights wl and w2. Thus the classification scheme involves adjusting the set

of weights wl and w2 so that distinct clusters of points are formed on the plane. In our

implementation, locations of points (records) on the plane are shown at each iteration

to show how points pull together to form clusters as the weights wt and w2 change. By

examining the actual operating states of ORUs, subassemblies and assemblies

corresponding to each record in a cluster, fault patterns characteristic to that cluster can

then be identified and recorded. This completes the description of fault patterns

identifier/trainer implemented in our system.

To describe FD&D, we show how to use what we have described above to detect

and diagnose faults. Assume that the operator observes a suspect set of sensor readings

(s_,....,sn). The idea is to see how "similar" this observed record is to records in each

cluster. This can be assessed by computing the weighted distance between the observed

record to each of the records in a cluster. The average of these distances reflect how
"close" or "similar" the observed record is to records in that cluster: the smaller the

average distance, the more likely that the observed system is operating at a similar

faulted state to the one identified for that cluster. By computing the average distance

from the observed record to each cluster and ranking these distances from small to

large, a list of possible faults can be presented to the operator in order of their

likelihoods.

A complete system FAULTS (consisting of SYSTEM BUILDER, RPFSim, Fault

Patterns Identifier/Trainer, and FD&D) was implemented on the TI Explorer platform

and installed on a TI Explorer at LeRC. Two demonstrations of the system were given,

one at CWRU and one at LeRC. More specific features of the system and how to

utilize them are described in Attachment 6.

4. CONCLUDING REMARKS AND RECOMMENDATIONS FOR FUTURE WORK

We began the research project with the goal of exploring the use of qualitative

reasoning (as in expert systems etc.) in combination with quantitative algorithms in a

lo

two-level structure to develop an autonomoussystemfor detecting and diagnosing faults
in spacepower systems. Lack of a definitive designand expert (qualitative) knowledge
of the spacepower systemforced us to concentrate our initial task on the building of a
knowledgebase.The fact that the designof the spacepower systemwas in the state of
flux prevented us from building a knowledge base specific to any design. Instead, with
agreement from our project managerat LeRC, we focused our research work on

developing a computer-assisted tool that could help build a knowledge base, once the

final design is in place. Such a tool could even be used for evaluating various design

configurations to aid in the selection of the final design. Based on the type of

information that could be generated by this knowledge base generator, a scheme for

detecting and diagnosing faults was also developed. As it turned out, the system

developed should be a powerful tool for both the space power system designer and for

the developer of a fault detection and diagnosis system, perhaps more so than was

originally envisioned.

The most obvious areas needing further work are the identification and

acquisition of appropriate qualitative information (expert knowledge), once available,

and how to effectively use such knowledge in combination with quantitative knowledge

generated by the system developed here to detect and diagnose faults. Even with regard

to the developed system, the work described in this report is by no means complete.

Several key issues have not been addressed and require further attention:

Maintenance and replacement options: Inclusion of the ability to include

maintenance and replacement options in SYSTEM BUILDER and RPFSim

would increase the utility and capability of the system tremendously;

Sensor placement design: How many sensors should be used and where should

they be placed?

Training set design: How many "training" records should be simulated and how

should they be selected? Also, how often and how this training set should be

updated?

Training method: Are there training procedures other than the self organizing
network that should be used?

Fault detection and diagnosis scheme: Are there other ways of using the

information obtained to detect and diagnosing faults? In particular, if some

qualitative data are also available, what data fusion scheme (Dempster-Schafer's

theory of evidence, Bayesian rule, fuzzy logic, MYCIN-like rules, or other

reasoning techniques under uncertainties) would be appropriate?

Other interesting issues concern the possible generation of qualitative knowledge

through qualitative simulations.

11

5. CITED REFERENCES

lo Computer-Aided Modeling and Analysis of Power Processing Systems

(CAMAPPS)- Phase I, S. Kim, J. Lee, B.H. Cho, and F.C. Lee, Research Report

prepared for NASA/Goddard Space Flight Center, NAGS-518, 1986

g Power Management Control For Power System Test Bed, Task Order 2 Final

Report, Volumes 1 and 2, Rockwell Internation, Rocketdyne Division, RI/RD87-

171-1

o Power System Description Document (PSDD), NASA/LeRC, SE-O1, September

1987.

, Adaptive Pattern Recognition and Neural Networks, Y.H. Pao, Addison-Wesley,

Reading, Mass, 1989

5_ Pattern Recognition: Statistical, Structural and Neural Approaches, R. Schalkoff,

Wiley, New York, 1992

12

j
_r-_r4 {edt i * Ii | e

llelm,_ LI _+ ACt ++o'n

i

--,, t t T
l

: ._ C T
I

Figuret(m) ProposedSystemStructure

,"Active"informationflowfordecision-ma_ing

• * Action

FLy,re].(b) Propom_SystemStructure

"Passive"informationflow for learning

acquisicionandstorage.

and knowledge

13

!
Q !

iILLIMOI

Figure 2 Schematic of the Power System Test Bed

(Based on Direct Energy Transfer (DET) System)

14

NOD_

NIW/_

Illlll

/
sTIr_T- STA21B

II LOAD,
TI_. --d/or

Figure 3(a) Two-level Model Integration

Profile of Power Load, Temperature or Illumination

_i==_i_ & 'I
@

|

I

@ @

* ¢aWllOaeet Node|l 8_1 J_t_fatiNI

[8cemlatl_

Figure3(b) An IllustrationofHow Orbit-LevelModel Works

15 ORIGINAL P,ttOE JS

OF POOR QUALITY

.<

41' ,,_

f _1144 "C 4g 411 _lr

j l l ,

l I J i

L

I

-, . _ _._ ._'L _' I

r- :_ _ _--_ "

m

0
2

0'3
i

Figure 4(a) RBDs of Energy Power System (EPS)

16

Figure 4(b) RBDs of Photo Voltaic System (PV)

17
ORIGINAl. P._QE IS
OF POOR QUALITY

Figure 4(c) RBDs of Solar Dynamic System (SD)

18
O.RIG;N_. P_O,E IS

OF POOR QUAt.i'i¥

I
I

..1%_

!

[

I
1 L

"_.y..d

•_t = +_.i '_ ._ I ,41 _ i

L

_.rr

+ + !

i

Figure 4(d) RBDs of Power Management and Distribution (PMAD)

19

ATTACHMENT 1

An Illustration of Fault Detection And Diagnosis Using State Estimation,

Alarm Processing, Trouble Call Analysis and Quantitative Data

With the assumption that a good knowledge base would be available for our

project (which turned out not to be the case), specific issues that we originally planned

to investigate were:

State Estimation:

The determination of the particular estimation method most suited for this

application and the frequency with which the state should be estimated.

Alarm Processing:

The determination of alarm processing rules for combining elementary events

and the length of time that the processor should wait for the occurrence of a

companion event.

Trouble Call Analysis:

The determination of which equipment should be available to register complaints,

the type of conditions about which equipment could complain, and how the

complaints would be generated and handled.

System Diagnosis:

The determination of the knowledge representation, the method by which to

combine quantitative and qualitative information, the resolution of conflicts, and

the method of learning.

Although, the lack of a good knowledge base forced us to concentrate our efforts

on the development of a KNOWLEDGE GENERATOR, some thoughts about the

above issues were made at least during the initial stage of the project, with special

emphasis on the system diagnosis component. These thoughts are summarized here. We

first summarize our ideas on how these components work individually and collectively in

a general setting, and illustrate these ideas with an example.

1.1

In the state estimation module, power system data including voltages,

currents, and power system data including voltages, currents, and power

measurements are processed to estimate unmeasurable internal states of the system

and to detect bad data or faulted conditions. Here, a static or dynamic model of the

power system, including the system [nterconnection topology is used to estimate the

system state. A least squares estimation technique is commonly used.

Bad data or faulted conditions can be, for example, identified using

statistical hypothesis testing techniques based on the properties of an "optimal"

least squares estimator. Detection is usually determined reliably, diagnosis is a

more difficult problem and generally requires some a priori modeling of faulted

conditions. The system reliability simulator discussed previously, for example, can

be used to serve this purpose. Techniques for diagnosis include innovations-based

methods, Bayesian techniques, and observer-based model matching and generalized

likelihood ratio techniques.

The alarm processing module correlates status information from various

subsystems of the space power system with regard to critical conditions. For

example, most physical devices such as regulators, inverters, etc. have constraints

on internal variables which must be maintained for safe and reliable operation. As

operating limits are exceeded, alarms are set and processed by this module. The

alarm data is processed to identify possible sources of faults which are consistent

with the observed data. This module is responsible for reporting alarm conditions

to the operator,prioritizing and classifying the alarms according to type, common

features, physical location, etc.

The trouble call analysis module handles complaints from various

components in the system with regard to the current operating configuration and

state. A typical example for the space power system could be that a load which was

1.2

scheduledto receive electrical energy at a specified voltage and frequency level was

not serviced properly, i.e., the quality of the service was unacceptable or the power

was never delivered. During faulted conditions where abnormal behavior of the

generating or distribution system is expected, information from the trouble call

analysis module will be used to develop a prioritized list of possible fault conditions

which correlate with the observed phenomena.

The system diagnostics module is responsible for fusion of the data received

from the state estimation, alarm processing, and trouble call analysis modules.

The first step in the fusion procedure is to classify the current operating

state. A convenient framework has been introduced in the work of T.E. Dyliaco for

terrestrial power systems. Here, operating states are classified according to normal,

alert, emergency and restorative. This decomposition of the operating states is

determined by equality and inequality constraints which govern the steady state

operation of the network. Modifications of these ideas to the space power system

are required because of the differences in oA)erating characteristics when compared to

the terrestrial system.

If the operating state is classified as being normal, no additional action is

required. If the operating state is not normal this is an indication of either the

existence of a faulted condition on the network or the vulnerability of the current

operating state and network configuration to possible contingencies. The alert

condition refers to a situation where the system operating state and network

topology are such that a probable (or possible) contingency could force the system

into an undesirable operating state.

1J

The emergency operating state refers to an operating condition where

equipment malfunctions and faults on the network have impaired the ability of the

power system to service the required loads. Automatic fault detection, isolation,

and active control axe required to maneuver the system to an acceptable operating

state and configuration. It is in this operating mode where data from the three

modules: state estimation, alarm processing, and trouble call analysis must be

integrated in a timely manner. A hierarchical detection and isolation methodology

is required where the functionality is decomposed according to temporal

considerations. That is, algorithmic or simple rule-based procedures for integrating

the information, e.g. Bayesian, Dempster-Shafer, and fuzzy set procedures, are

implemented at the lowest level of the hierarchy. This information is then used for

the automatic implementation of remedial actions to at least stabilize the system

until the root cause can be determined. The next level of the hierarchy implements

problem solving techniques to determine the cause of the fault and this information

is used to reconfigure the system through the implementation of additional remedial

controlactions.

To illustrate the basic ideas of the approach, consider the problem of

detecting and isolating a breaker failure in the system shown in FigurelA. All circuit

breakers are assumed to be initially closed. A fault is postulated on line A which

would normally be cleared by opening breakers 2, 3, and 10; but, if breaker 3 failed

to open, then bus 1 - section 2 would be cleared by a breaker failure scheme

involving the additional opening of breakers 6 and 9. The problem reports that

would be generated by this sequence of events are summarized in Table 1. Note

that the "Event" column is not part of the problem report; it is included here only

for clarification. Also note that the numbers given for the state estimation entries

are in a per unit format for illustration purposes only and so do not correspond to a

particular system.

1.4

Btc.g

Sicr_ 9.

r,

f

A

8

Figure 1.1 Example Power System

,°l"

-E

i

,,(
B_s 2

Table I. Problem Report Summary forBreaker FailureExample

Event Location SE AP TCA

Fault

Primary
Protect ion

Backup
Protect ion

Line A I=10,0 High currentflow none

Bus I V=0.65 Low voltage none

Bus 2 V=0.65 Low voltage none

Load 2 V=0.65 none Low voltage

Line A I=0 High current flow none
Line deenergized

Bus I V=0.70 Low voltage none

Bus 2 V=0.75 Low voltage none

Load 2 V=0.70 none Low voltage

Line A I=0

Bus I V=0.95

Bus 2 V=0.92

Load 2 V-0.90

Line deenergized none

Breaker failure none

Voltage normal none

Voltage normal Voltage acceptable

1.5

When the fault initially occurs, the short circuit current flowing in line A

would result in the state estimation (SE) and alarm processing (AP) outputs shown

for that location. The fault would depress the voltage at buses 1 and 2 and also at

the load fed from bus 2, resulting in the reports shown under SE, AP, and trouble

call analysis (TCA) for those locations. The fault would normally be cleared by the

primary protection system by opening breakers 2, 3, and 10; But, if we postulate

that breaker 3 does not actually open and is incorrectly reported open by the

instrumentation, then the SE would remove line A from its model and report zero

flow in the line; AP would take as input the opening of the three breakers and

report the line as deenergized. However, current sensors on the line would still

measure short circuit current, causing AP to continue to report the seemingly

contradictory high flow alarm. Voltages would continue to be depressed, producing

the reports under SE, AP, and TCA for the locations shown. The backup

protection, the breaker failure scheme, would now react, tripping breakers 6 and 9

to isolate the fault. AP would combine these breaker trips with the previous three

trips, using the relaying schemes in the knowledge base, to produce the resulting

breaker failure suggestion at the bus 1 location. SE, AP, and TCA reports for all

locations would show that all voltages had recovered.

The system diagnosis component takes the information in these problem

reports and the fault types and component functional descriptions in the knowledge

base to form hypotheses. These hypotheses are used, for example using the

Dempster-Shafer theory of evidence technique, to determine the support for the

hypotheses provided by the information within individual problem reports, among

reports received in the same time frame, and among reports received from the same

location.

1.6

Typical Alarm Processing Rules:

If FROM-BREAKER and TO-BREAKER of LINE X are OPEN then issue alarm
LINE X DEENERGIZED.

If FROM-BROKER and NOT (TO-BREAKER) of LINE X are OPEN or NOT
(FROM-BREAKER) and TO-BREAKER of LINE X are OPEN then issue
alarm LINE X DISCONNECTED AT OPEN-BREAKER BUS.

FunctiQn_,l DescriDtion of Components in Example

Bus: distribute power; every component connected to bus is constrained to same
voltage.

Transmission line: distribute power/conduct current; voltage at terminals related to
current in line by certain model; model is dependent on line length in relation
to wavelength.

Circuit breakers: connect/disconnect lines
-open: no current through breaker
-closed: no voltage drop across breaker

and loads to buses; two modes

Relay circuits: (general) measure voltages and currents and send operate signals to
breakers when certain combinations occur, dependent on specific type of
relay circuit. Special types include overcurrent (send trip signals when
current exceeds setpoint), backup (send trip signals when primary protection
has failed), breaker failure (special type of backup relay circuit; sends trip
signals to isolate bus section when primary protection fails to clear bus or
line fault).

1.7

ATTACHMENT 2

Space Power System Prototype:
A Simulation Model

User's Manual

Vira Chankong, Kenneth A. Loparo, and Igor B. Vaks
Department of Systems Engineering
Case Western Reserve University
Cleveland, Ohio 44106

This note gives step-by-step instructions for initializing
and running the simulation of the Space Power System model
written in Turbo Pascal 4.0. Options available to the user are

listed and explained below.

The program is called STATION.EXE. All other files in the
diskette must also be in the same directory. The program is

activated by typing STATION and pressing <RETURN>. At this
point the user will be presented with the main menu:

,$s MAIN MENU Igl

b. Orbit Dro4il.

C. RUm-_I _e ODt; QnS

d. Fault Qpt; _.

e. S: m_i atlc._
_, Qu;t

Use <Up> and <Down> arrow keys to move from one option to
another. Alternatively, you can type in a letter that
corresponds to the option on the screen. For instance, to choose
"Run-Time options" type in <c> or press <down arrow> twice and

then <Return>. To choose the highlighted option press
<Return>.

To run the simulation (Option e),

to be provided:

the following items need

i. Initialization of the battery (Option a)

2. Temperature and illumination profiles for the
solar array module (Option b)

3. Power load profile (Option b)
4. Run-time parameters, e.g. time-step and

simulation time horizon, etc (Option c)

5. Specification of faults for simulating the

system response to faults (Option d)

2.1

*Developed under Grant NAG3-800 from NASA Lewis Center, Power Technology Division,
Cleveland, Ohio.

Default settings are given for some of the above items.
Default values can be entered by pressing <RETURN>when asked for
input. A short description of each option in the main menu
follows.

A. Start up menu

t$1 mAIN MENU ¢1t$

OrO*t =to, ill
$|t START UP t== Run-tlme opttoml

_ault o_tlone

e_. _ g; mul a_i on

b. DC System Ou*_

c. AC System

O. E_It

l Ill BATTERY III

Battery chlr_l c_'re_tl 5,0 aiD,

Battery voltage: Ig vOltS

E_ker nwa value or _rass ,.RETURN>

This option allows the battery to be initialized (Option
"Battery"), and the steady-state behavior (Option "DC System")
and AC behavior (Option "AC System") of the system to be
investigated under normal operating conditions (i.e. no changes
internally and externally to the system).

Battery
The battery option should be run to initialize the battery

to a specified battery voltage level. The default value of this

voltage is 18 Volts. If the user want to choose another level, a

value not exceeding 20 volts is recommended. Choosing a larger
value may result in a very long charging time, since the
charge/voltage curve levels off at around 19-20 volts.

m

The battery charging current must also be provided. The
default value, which is highly recommended, is 5 amperes.

Choosing a lower value will lengthen the charging time and a high
value will most likely result in a voltage drop during low-
current operation due to the charge/discharge characteristics of

the battery model.

The initialized battery voltage level and the battery

charging current can be entered through Option 'a' of the Start-
up menu. If this option is not run, the battery voltage and the

battery charge level will be zero.

22

DC Behavior

When there are no internal and external changes in

system, the steady-state DC behavior can be examined using
option.

the

this

AC Behavior

Th_s option allows the user to view the start-up AC

characteristics of the system. Before running this, two

parameters have to be specified. Run-time is the length of the

time horizon in seconds for the simulation run and time step is

the integrated time step (in seconds) used in the computations.
The default value for run-time is 3E-4 seconds and for the time

step is IE-7 seconds. The default run-time will be used if

option <a> is not activated. Likewise, the default time step
will be used if option is bypassed.

I

I

t
! _Im ;.C _EHAV'O_ _sl
|]

--I _. r_,. ,t., jl

c. E,: ocutll

Oe_ aui t t _ me - _. ')OO0¢OO,_OOOOOOE-O¢04 ,._ _u_*_

B. Orbit Profile

i ill MAIN MENU ssl

I a. Star_ ua¢. Run-t_me _Dti_nl

¢¢$ 0rbit Fh-o_*lm III

Max 500.0_0

_ould y_J like t= dilQ|iV It_rM ,i|ue 9

23

This option allows the user to specify temperature,

illumination and power profiles for a simulation. The first two

profiles are the characteristics of the solar array module,

whereas the third profile is for the load. Use arrow keys or

press an appropriate letter key to move the cursor to highlight

the desired option and press <RETURN>. In response to "Enter

minimum, maximum and initial <Parameter name> values", type in

the values of the lower and upper limits of the profile to be

entered as well as the initial level to start the profile. The
default values of these quantities will be shown on the screen.

To choose any of these default values, press <RETURN> when asked

for input. The rest of the profile will be entered graphically.

At this point, the user will be prompted "would you like to

display stored values?". If you have a profile already stored on

the disk and wish to rewiew and/or change it, press <y>.

Otherwise, press <RETURN> or any other key.

The profile is generated graphically by moving the arrowhead

from left (initial value) to right. The speed of the arrowhead

can be controlled by pressing keys <l> (slowest) through <9>

(fastest). The key <0> corresponds to the stationary position.

When the arrowhead starts moving forward, its direction can be

changed by the arrow keys and PgUp, PgDn, F1 and F2 keys:

Direction of Movement

Arrow keys

PgUp

PgDn
F1

F2

AS indicated on the key

45 degrees upward

45 degrees downward

Gradual change upward
Gradual change downward

When finished with this option, the new input data is stored

on the system disk and doesn't have to be re-entered n_xt time

the program is used.

C. Run-Time Options

This option allows the user to modify the Run-time

parameters and choose different ways to run the simulation.

a.

This option gives the user a choice to view the data after

every change in external conditions (illumination profile, etc)

or internal conditions (faults,change from charge to discharge

mode, etc) conditions. This "display" mode is the default mode.

The alternative mode is to run the simulation continuously for

the complete simulation time horizon without display. Pressing
<a> switches from one mode to the other.

For example, if the program is running in the default

(display) mode, pressing <a> causes the program to run in the no-

display mode. Pressing <a> again switches the simulation back to

the display mode.

2.4

b.

The default time step for the DC mode is one microsecond.

Option b. can be used to change the default setting. However, a

smaller step size will slow down the execution time even though

it may result in a mote accurate simulation. Increasing the time

step will speed up the simulation but may make the system

unstable.

C.

The default value of the simulation run-time is 90 minutes.

You can change this by choosing <c> and entering the desired

simulation time when prompted, when this is done, be sure to

modify the orbit profiles (Option b in the main menu)

accordingly.

d.

The

& AC mode.

the other.

simulation can be run in either DC mode (default) or DC

Pressing <d> in this menu switches from one mode to

eats MAIN MENU a811

2.5

D. Fault menu

The program allows various kinds of faults to be
These faults are listed in the following table.

simulated.

Fault Comments

Solar Array
Panel breakedown

DC loads
Leak

Switch

Sensor

AC load

Battery

Charger

Discharger
Cells

RBI error

A specified % of solar

panels fail

Resistance of R in the LRC

circuit is decreased

The on/off switch in the

power stage is stuck in
the wronf position

Wrong value is reported
by the voltage and/or
current feedback modules

The Resistor value in the

inverter module is decreased,

resulting in power loss

The charger switch is
stuck in either ON or

OFF position
same as above

A specifyied % of battery
cells fail

The specified RBI is stuck

in an incorrect state (e.g.
OFF instead of ON, etc.)

This option allows the user to configure form any desired
fault pattern. First the time (in minutes) at which a particular
fault occurs is entered. Then the type of fault is chosen from

the given list. Finally when appropriate, the severity of fault
is entered. Multiple faults occuring at the same or different
times can be easily formed. For example, if we wish to simulate

the following faults:

A. 20% Solar panel breakdown at the 20th minute

B. Moderate equipment short at the 20th minute, and

C. Degradation of battery cells resulting in the
battery voltage to 15 volts at the 50th minute.

drop of

The following sequence of keys are pressed:

From the main menu, choose <d>
From the Fault Schedule menu, choose <a>

In response to prompt, type in 20 (meaning that a fault
will occur at 20 minutes)

2.6

A menu of possible faults will appear on the screen.

In response to "Chose <l> through <5>" press <l>

In response to "Choose <a> through " press <a>

In response to "Enter % power loss" type in 20

(meaning that there is 20% power loss due to panel
breakdown.

This completes the specification of Fault A. and you are
returned to the Fault Schedule menu. An entered fault should be

listed on the right part of the screen.

To specify fault B, press .

In response to "Choose <i> through <I>" press <i>

In response to "Choose <!> through <5>" press <2>

In response to "Choose <a> through <c>" press <a>

In responce to "Choose one", press

This completes the specification of Fault B which occurs at

the same time as Fault A. At this time the original Fault
Schedule menu should return to the screen.

Finally, to specify fault C, press <a>

In responce to "Enter time between 0 and .." ripe in <50>

(meaning that fault C occurs at time 50 minutes.)

In responce to "Choose <i> through <5> press <4>

In responce to "Choose <a> through <c> press <c>

In responce to "Enter resulting battery voltage" type in
15 and press <RETURN>

This completes the specification of all faults.

first Fault Schedule menu should return to the screen.

to return to the main menu.

Again, the
Press <c>

Note : At this time faults can not be erased once

If you make a mistake, the only way to correct it is to
the program. This inconvenience will be corrected later.

enterred.

restart

Sis Fault Schedule #sm

a, Scmw_ule .row _at_lt ti_

b. Add to exlMSn9 4_lt t;me
¢. Return to 14An

"I. Ti_e m _O. OO minutms

Solar _"_ay, Panel oreakdQwn |B

Equipmlmt, Short tl
2. Time = 50.00 minu_es

Bat_ITy, Ceils tX

En_e_" _elult1_g bat_y volt_B
15

2.7

E. Simulation

This command executes the simulation. If the continuous

simulation option was chosen (<a> from run-time options menu)

then the program will run without interruption for the length of
the orbit. Otherwise, after every change the user will be

prompted with the following menu:

5ela? :i-ei 5 -'-5

_atte_y c_a_ge :I0.,>9700

Battery woi%age LB.O0000

Battery cur.ent L._50

Voltage _8.141

Curm.% t1_

Total time

: 4.7_0000000000_[-0_04

: 4. 80000000000000[-0004 eye IIIs

i
I

_. OC _ode anly i

=. Can_nue I
_. Leave llm_lat:om !

I
Orbxt Time 5.59 mlnute@

At this time the user can display results from the previous
run on the screen (Option <a>), switch between DC mode and DC &

AC mode (Option), continue the simulation (Option <c>), or
exit to the main menu (Option <d>).

Displaying the results (Option <a>):
After choosing this option the user will be presented with

the list of DC variables that can be displayed. Select one and
enter the minimum and maximum values for that variable. Ideal

values for the variables are given below:

Bus Voltage
Bus Current

Battery Current
Shunt Current

Equipment 1 V
Equipment 1 I

: 28.144

: 15 through 40

: -i0 through 20
: 0 through 10
: 20
: 10

Choosing option <h> from the display menu allows the user to
view AC variables. This option is available only if running the
entire simulation (AC and DC components). The ranges of value

for AC variables are given below:

AC Voltage : -77 to 77
AC Current : -0.5 to 0.5

Inductor Current : 0 to 20

2.8

ATTACHMENT 3

An Illustration of How to Use Pascal Version of

Fault Detection and Diagnosis System Based On the DET Model

To illustrate a more detailed implementation of the Pascal Version of the Fault

Detection and Diagnosis system developed in Year I, consider the problem of detecting

and diagnosing faults on the DET system shown in Figure 2 in the text. Assume that are

a state estimation procedure and an alarm processing procedure are in place to monitor

the system operating state and to report any abnormal operating conditions. The specific

approach described here does not explicitly consider trouble call analysis, but an

extension to include such a function should be easy.

Suppose further the following information is also available:

(i) Past records of faulted states which show not only the faulted conditions but also

the associated symptoms of such conditions. This type of knowledge is usually

referred to as data or empirical knowledge which is quantitative in nature. It is

stored in a data base. Instead of or in addition to historical records, this type of

knowledge can also be generated by simulation if a good simulation model of the

system is available.

(ii) Good scientific understanding of how primitive components of the system work

individually as well as collectively. This is theoretical or scientific knowledge.

(iii) In addition, (i) and (ii) may be combined with judgmental knowledge gained

from experience with this or other related systems to form what we call

procedural (rule-based or inferencing) knowledge. This involves the

understanding of the functions of components or groups of components as

opposed to detailed scientific properties or behaviors. This type of knowledge is

more readily suitable for problem solving or reasoning and is usually qualitative

in nature. It is stored in a knowledge base.

In our example, each type of knowledge was generated by using the DET

simulation model developed in Year 1. In Particular (i) and (ii) were created by running

the DET model several times as part of the experiments performed in Year 1.

Given the existence of a data base containing past or generated records in (i),

3.1

the knowledge base containing procedural knowledge (rules) in (ii) and (iii), and the

information from the state estimation procedure and the alarm processing procedure

reporting abnormal operating conditions, how can the faulted conditions be diagnosed?

It is clear that an approach that combines both quantitative and qualitative reasoning is

needed. This is consistent with the two-level "structure" theme of this research.

In the structure described below, a memory network is used to process

quantitative information, a Prolog rule-based system is used to process qualitative

information, and backward and forward chaining procedures are used as a means for

fusing information processed by the two procedures. This is illustrated in Figure 3.1. We

show below how this structure works, and how attractive and effective it is for this type

of problems.

state information

_ MemoryNetwork

Computer)C Simulation

I Post-procettmg I

ftutt list = (r

feeatmck \

slate _nform=tion

Prolog BaseKn°wletJgeI

Figure 3.1 Structure of a Fault Detection and Diagnosis System based on DET

3.2

The Prolog model incorporates two basic types of information, static and

dynamic. Static knowledge refers to the functional description of the components,

the connections between the components and the fault protection scheme, e.g. which

actions should follow as a consequence of which alarm signals. Dynamic knowledge

includes operating conditions of the power system, alarm signals, input from the

memory structure itself and feedback from the user. Dynamic information is

inserted into the Prolog knowledge during execution by using a file stream. The

data can be changed by the rule-based system by inserting new facts over those

which previously existed in the database. For instance, the data could be

inconsistent due to a sensor failure or poor identification of the situation by the

memory structure. In that case, the program will disregard unnecessary information

which may lead to inconsistencies in the database. Inconsistency could be caused by

one of the three conditions: incorrect/incomplete data, bad rule in the data base or a

sub---optimal similarity function. The conditions can be classified and last two

inconsistencies will be corrected.

The information is organized into several structures, called predicates. These

structures provide a functional way for the Prolog deduction mechanism to

determine state estimates and to perform fault analysis given the qualitative

information about current system parameters. The Prolog language allows this in a

very natural way. The facts about the system under study are declared, clauses to

manipulate these facts are built, and the deduction is done automatically by the

Prolog inference. For instance, several rules would be used to describe the battery

unit:

3.3

Maintains bus voltage in normal range
Should be in discharge mode if bus voltage is low
Should switch to charge mode if there is excess power
Should be in charge or neutral mode if shunt regulator is on
Battery current should not change unless a fault or change in
conditions occur

Battery current should be increasing (up to max. value) as long as the
bus voltage is low

If bus voltage is low and slope of battery current curve is less than
<value>

then {battery voltage is low} or {a problem with error
feedback in dfscharge unit}

If bus voltage is low and battery current is zero
then {a problem with error feedback in discharge unit} or
{incorrect RBI state}

The inference engine can use both forward or backward chaining to arrive at

the solution. Forward chaining refers to working toward the goal from the

premisses. Backward chaining is picking a possible solution and checking if it is

deducible from the available information. This particular program uses both

methods. To come up with the first list of possible faults the program produces a

forward chain, from state conditions, through component functions and alarms to

faults. A second list of possible faults is read in as an input from the memory

structure. Prolog works backwards, attempting to show that these faults are

deducible from the data base. Next, the program checks if the two lists are

consistent, producing the final answer.

3.4

The purpose of the memory network is to provide a concise and meaningful

representation of past experiences. This allows the decision making system to

exhibit a certain amount of adoption to a changing environment. This capability

will help to ease the amount of apriori information which must be built into a

system.

The memory structure is composed of a variable number of interconnected

Each cell is a record of a particular event which has occurred in the system's

Below are examples of some of the information that may by stored in a

typical cell record:

Operating condition
Type of fault

Outside conditions
Power demand
Solar array

Cell number 23

Fault, recovering
Battery Discharger

Unchanged
Unchanged
Changed from Shunt Mode to Full Power Mode

List of adjacent cells

Number Fault

12 Battery Discharge
35 Battery Discharge
37 Inverter

and so on -- any number of cells can be i t_cluded

Distance
3.7
3.95
4.1

3..5

Record of state parameters
Graphs for Bus Current, Battery Current, Equipment Voltage,
Current and Shunt current were included. An example of

parameters is given below.

Solar Array
one of the

Q

m

21
I

v

Time

The strength of the connections (or alternatively, the distance) between two

cells is a reflection of the similarity between events stored in these cells. Ideally, all

experiences which are similar will be grouped together. For example, all power

generation faults will be placed in a distinct cluster. Within that cluster it should

be possible to identify two groups: solar array and battery faults. Each of the

3.6

groups can be divided still further, e.g. charger, discharger and battery cell failures.

These groupings can be made by using any one of a number of topological clustering

methods given that a similarity function has been defined, the metric or similarity

function simply provides a way of specifying which aspects of the experiential

information are important when determining the degree of closeness among

experiences. In this implementation, the metric itself is determined with the help of

the Prolog database.

Each cell contains information about several important parameters traced

over time. Comparisons among the cells may be achieved by matching all of the

parameters in two cells and adding the differences. Some parameters are more

important than others, this can be represented in the memory structure by varying

the weights associated with each term. Even more distinctions can be made: the

fact that there was a sudden surge in voltage could be far more important than the

actual value of the surge or initial voltages. To implement this, over a dozen

comparison functions were defined. Each function is designed to test for a certain

pattern: similar initial or final conditions, slopes of graphs, sudden surges or drops,

etc. The function takes two cells as an input and returns one if the cells are

dissimilar, zero if the cells are similar with respect to that particular function.

Some of the functions return a scalar value of the difference instead of one or zero.

The distance between cells is the weighted sum of all the functions:

a a Wifi (celll, cell2)Distance (celll, cell2) = _ i--i

3.7

Some examples of the functions are given below:

fl

f2
fs
f4-_o

fll

Normal initial conditions (all parameters in range)
Normal final conditions
Unstable final conditions

Surge/Drop in {bus voltage, load voltage, battery
current }
Euclidian distance between vectors formed by array
currents, battery currents, shunt currents and
equipment currents of the two cells

These functions together with the assigned weights define the metric.

Determining the weights properly is the most important part of the identification

process; this is described next.

Initial training of the network consists of entering a number of known

conditions into the network and trying out different weights until distinct and

meaningful groups are formed. Since we know the states, it is easy to determine the

distinct and meaningful criteria, identical conditions are grouped into distinct

clusters. The search for weights is guided by the rule base which restricts the

number of weight permutations. First, the clustering method is applied using

weight values of one. The resulting groupings are scanned to check which mistakes

are committed most often. For example, equipment and inverter faults could be

confused and grouped together regularly. The program will then scan the Prolog

3.8

database and determine characteristics that separate the two faults. As a result, it

will increase the weights associated with shunt current, equipment voltage and

power stage status. The clustering method would be applied again to check if the

weight changes resulted in an improvement. Eventually, the program hits the

performance ceiling, changes in weight values do not result in additional

improvements.

Once the training is complete, the network can take a state as an input and

match it against previously stored experiences. The result is a list of cells the input

state most closely resembles. This list is passed on to the Prolog rule-base for

further classification. If the matching was not successful, the answer determined by

the Prolog rule--base is fed back to the network and the weights are reshuffled in an

attempt to come up with a better matching. The process is identical to the one

performed during the training period, however only minor adjustments should be

needed. The program also has to decide if the new state is sufficiently distinct from

previous experiences to warrant being added to the structure.

For example, the memory network reports a battery cell failure. The expert

system, after examining state conditions, alarm calls and the location of the fault in

the memory structure decides that a power stage in the battery discharge unit

failed. Next, the functions of the two components are compared to help modify the

similarity function. The weights associated with the slope of battery current, slope

of bus voltage current and magnitude of the battery current are changed slightly.

3.9

The program keeps modifying the weights until the last fault is identified correctly.

At the same time, the overall structure of memory is monitored to make sure that

weight permutations do not disturb the existing clusters and cause other faults to be

identified incorrectly.

Experimental validation of the fault detection and diagnosis system was

accomplished when the data for the memory network was generated using the model

simulation. Originally it was planned to use several hundred cells to represent the

system. However, the system performed surprisingly well with as few as 50 cells.

Since the intent was to study the way the system improved with time, it was

desirable to start with a practical implementation, therefore the original training

was performed using only 50 cells. Each cell was represented by a Pascal record

with variable and static fields. Static fields contain cell numbers and information

pertaining to the state stored in the cell. Variable fields contain state classification

data and a list of cell numbers which are within a certain distance from this one in

the network. An evaluation function penalizes the net whenever the list of similar

cells contains cells with different states. Determining the metric is an optimization

problem -- choosing a set of weights which minimizes this evaluation function.

As expected, there were two ways to improve the solution. The first

involved wing more information about the states and the second was to add more

cells to the structure. If all of the relevant information was known apriori and all of

the important states listed, then the memory network would exhibit perfect

3.10

performance. While this is not possible in practice, the available information was

enough to identify most of the faults correctly when tested on simple problems. Out

of the twenty novel faults tested, nineteen were identified correctly. Since the states

diagnosed incorrectly are added to the memory, the network is taught not to make

the same mistakes again. When problems that were caused by multiple faults were

simulated, the list of possible faults included one of the problems in all cases and

both problems in approximately 3/4 of the cases. The performance seems

acceptable considering the small size of the network and could be improved

significantly by training. It is worthwhile to note that in cases where the problem

was diagnosed incorrectly by the memory network, the solution was in the correct

"neighborhood" -- the most common mistake was confusing battery cells and

battery charger faults, equipment short and power stage short faults.

A problem with rule-base knowledge systems is the tendency of the search to

diverge. Here for instance, solar array faults were frequently mistaken for inverter

faults. Using the memory structure helps to eliminate this problem. While the

alarms for the two faults could be similar, the quantitative state information is

quite distinct. Hence, the memory will never confuse the two faults when it passes

the solution to the database, only one of the faults will be on the list.

3.11

Example (using incomplete/partial information)

The DET system is operating in shunt mode during the solar cycle. The

battery is in neutral mode and 7 solar panels are turned off. An alarm reports

sudden drop in bus voltage with no other fault conditions. The solar array is turned

to full power and the battery is switched to discharge mode. Bus voltage stops

decreasing, however it is still below normal. No other alarms are reported.

The alarms and conditions are presented to the rule based system and the

memory network. Two things have to be accounted for: drop in bus voltage and

inability of the system to recover.

Rule base

I. Voltage drop could have been caused by:

1. Energy generation problem in solar array, i.e. panel failure
2. Power leak in the Inverter module

3. Power leak in the Equipment Power Stage

II.

In case 1. there should have been an alarm on solar array current.
However, a problem with current error feedback could have caused
both the low voltage condition and absence of the alarm.
In cases 2. and 3. there could have been a problem with supplying
sufficient power to the loads. That problem might not be detected for
a relatively long time (more than 20 milliseconds).

Stable but low final voltage:

a,.

b.
C.

d.

Low battery voltage -- there is a limit on how much power
can be supplied
Problem with error feedback in the battery discharge module
On/Off switch is in the incorrect position -- the battery
and/or discharge unit are disconnected from the system
RBImalfunction

Logically consistent combinations of faults I & Ib la,ld, 2a,2b, 3a,3b.

3.12

The Memory Network reportsa list of past experiences that resemble the
fault the most:

CellNumber Condition Similarity metric

cell 17 Solar Array 6.51

cell 46 Solar Array 7.8

cell 18 Battery Discharger 12.53

cell 24 Solar Array 14.65

cell 25 Battery 19.08

Single fault conditions are easily identifiable by the network. The list of

similar faults should be uniform and contains a number of cells at a distance of less

than 5 units. Since this is not the case, the rule base will identify the fault as a new

condition: it does not fall into any one of the existing clusters. Despite that, the

information is far from useless. The Prolog program concludes that a multiple fault

occurred: solar array failed, causing a drop in power supply and the switch in the

battery discharger is not working properly, preventing the system from recovering.

The fault conditions are added to the memory structure, so that the next time this

multiple failure occurs, it can be identified immediately. In this case, information

was treated simply as additional evidence in support of scenario lc. Given more

powerful computational facilities, a much deeper reasoning is possible.

The fault condition has something in common with fault conditions stored in

cells 17, 46 and 24 -- the solar array faults. The fault is also placed in the

3.13

neighborhoodwith cells containing battery faults. The parametersthat are

responsiblefor this matchingscan beeasily identified,both explainingthe process

and suggesting,perhapsevenaddingnew rulesto the expert system. In the same

way, the memorycan "explain" why other choicessuggestedby the expert system

were incorrect. This exampledifferedfrom cellsstoring inverter and equipment

faults in solararray current characteristics.Switch from shuntmodeto full power

mode was responsiblefor partial recoveryof system, suggesting that the fault

occurred in the battery discharger or the RBI, not the battery itself.

To summarize, this implementation of the proposed two-level structure has

several interesting features:

aJ The similarity function is flexible and is constantly updated to account for
new experiences. This feature is extremely useful when the true metric is not
known: the system can learn new patterns in a way similar to neural
networks, the search for the weizhts, however, is guided by rules in the
knowledge base instead of a fixed Y'earning algorithm. This leads to a very
useful feature.

b. Unlike a neural network, the system has explanation capabilities. The
clustering of data in memory is performed systematically by the rule-base.
To explain a match, the system can look at the aspects of the similarity
function that were responsible for making the match. Since the rules used in
forming the similarity function are known, all of the information needed to
explain a match is available.

C. Some rules in the knowledge base could be redundant or incorrect, the
system is able to identify these rules automatically: removing them from the
knowledge base improves the clustering of data in the memory network. On
the other hand, some evaluation criteria could be missing from the similarity
function. Correcting this problem in the neural network involves additional
training, often extensive, and not always a successful process. The system
described here can use this method or attempt to add new rules to the

knowledge base, a much quicker and more efficient process.

3.14

Once the training is completed,both the rule---basedsystemand memory

networkcan function independentlyof eachother. Whena problem is presented,

both systemstry to find the solution, one using qualitative reasoning,the other

quantitative information. A rule-basedexpertguidesthe two systemsto makesure

that both solutionsare consistent. The capability also exists for the expert to

evaluateperformanceof the systemandsuggestwhenchangesin the rule baseor the

similarity functionareneeded.

3.15

ATTACHMENT 4

Operating Replacement Units (ORUs)

PHOTOVOLTAIC MODULE (PV)

SOLAR ARRAY ASSEMBLY - converts solar insolation to DC electrical

power.

i01,i02 RIGHT or LEFT SOLAR ARRAY BLANKET and BOX

-structure that houses the large area silicon solar cells

used in converting solar energy into electrical energy. The solar

cells are fixed to an accordion-folded flexible blanket stored in

a box during launch.

i0] MAST/CANNISTER

-support mechanism that deploys and provides support for the

solar blanket. The cannister houses the mast mechanism during

launch.

104 SEQUENTIAL SHUNT UNIT

-a switch that regulates the solar array wing output voltage

in response to control signals generated by photovoltaic (PV)

control elements in the DC switching units (DCSU). It shunts

array current that exceeds the load demand.

BETA GIMBAL ASSEMBLY - provides structural support, structural

attachment, articulation for sun P&T and the transfer of

electrical signals and power to and from the station PV power
module.

iii GIMBAL ROLL RING SUBASSEMBLY

-delivers electric power command signals from solar array

assembly through th beta gimbal assembly to the IEA. The power

and data that flows through this subassembly is destined for the

electrical equipment assembly to be converted, stored and

4.1

distributed as required.

112 GIMBAL BEARING SUBASSEMBLY

-provides rotational capabilities and structural support for

the roll ring subassemly, drive motor subassembly and PV array.

It provides path between the power generation device and the

transition structure while allowing for orientation to the sun.

It consists of a pair of bearings, ring gear and housings.

113 GIMBAL DRIVE MOTOR SUBASSEMBLY

-controls the position, velocity and acceleration of the beta

gimbal. It provides control commands to the gimbal drive motors.

It imparts drive torque to the bearing subassembly via the ring

gear enabling the beta gimbal to rotate.

114 STATION GIMBAL TRANSITION STRUCTURE

-positions the beta gimbal as designed.

INTEGRATED EQUIPMENT ASSEMBLY - provides structural attachment

for energy storage, and electrical equipment assemblies,

requiring on-orbit maintenance and cooling.

121 INTEGRATED EQUIPMENT ASSEMBLY STRUCTURE

-serves as the structure to which utility plates, thermal

manifolds and electrical cables are attached. It consists of a

rectangular aluminum box frame with attachment holes.

122 CABLE SET AND TRAY

-provides cabling connecting components requiring data or

power. It integrates the PV cable set to the truss and the

structural framework.

4.2

THERMAL CONTROL ASSEMSLY - acquires and transfers excess heat

from PV module and rejects it to space.

131 RADIATOR PANEL

-provides the medium to reject excess heat acquired by the

utility plates. It consists of nine panels, a condenser section

that actually rejects the heat into space, and an evaporator

section that interfaces with the main condenser. Its design

allows for two panels to fail before affecting ORUs on the

utility plates.

132 GN 2 CANNISTER

-contains nitrogen gas used to pressurize the bellows which

are used to provide a high contact force evenly distributed over

the contact area between the condenser and radiator panels.

133 PRESSURIZATION UNIT

-regulates the pressure of the nitrogen gas in the radiator

panels to ensure continual and maximum contact between the

condenser and radiator panels.

134 INTERCONNECT PLUMBING

-piping that connects the elements of the thermal control

assembly and provides a vessel for the transport of excess heat

and heat transport fluids. It includes piping taking the heat

from the utility plates and connects the heat acquisition, heat

transport and heat rejection components.

43

135 CONDENSER/INTERFACE SUBASSEMBLY

-receives super-heated ammonia vapor from the utility plates

and releases it to the evaporator of the radiator panels.

It condenses the vapor into sub-cooled liquid which enters

the cold end pumping chamber of the rotating fluid management

device (RFMD).

136 CONDENSER MOUNT STRUT

-provides a mounting location for the condenser to keep it in

contact with the radiator panels.

137 ACCUMULATOR

-regulates the amount of liquid ammonia in the RFMD of the

pump unit. It is part of the heat transport subassembly that is

activated when transients arise in the various heat transfer

processes. The accumulator volume is controlled by the vapor

pressure of the ammonia.

138 THERMAL CONTROL PUMP UNIT

-provides force to maintain proper fluid flow in the thermal

control assembly.

139 THERMAL SUPPORT STRUCTURE

-provides the support framework for the thermal control

assembly.

140 UTILITY PLATES

-provides surface to mount battery packs and electronic

equipment ORUs. It provides thermal, electrical and fluid

interfaces between energy storage assembly ORUs and the PV

4.4

electrical equipment ORUs. The plates are mounted to the

integrated equipment assembly.

ELECTRICAL EQUIPMENT ASSEMBLY - controls DC power, converts DC to

AC power and provides electrical interface to PMAD and Solar

Dynamic (SD) modules.

141 DC SWITCHING UNIT (DCSU)

-regulates and controls the source power so input power is

always within acceptable limits. It provides the power switching

function for interconnection of solar array and battery source

power to the main inverter units (MIUs) for conversion to 20 kHz

AC power. DCSUs always come in redundant pairs.

142 MAIN INVERTER UNIT (MIU)

-converts DC power obtained by the solar array or energy

storage assembly to 20kHz AC power. MIUs are always used in

redundant pairs.

143 MAIN BUS SWITCHING UNIT (MBSU) -allows AC power to

find the best path to PMAD. It is a combination of remote bus

interface (RBIs) switches. It provides switching between

redundant AC busses. MBSUs are always used in redundant pairs.

144 PV SOURCE CONTROLLER (PVSC or PVC)

-provides communication between the PMC and the PV module

functional controllers. It controls the generation, storage and

regulation of the PV source power. It controls and monitors the

PV wings. It can operate PV module in the event of certain PMAD

failures which increases system reliability. PVSCs are always

used in redundant pairs.

4_

145 POWER DISTRIBUTION and CONTROL UNIT (PDCU)

-provides lower voltage AC power to PV module electrical

equipment. It resembles a house's wall outlet by function

(i.e.,it does not look like a wall outlet, but operates similar

to an outlet). PDCUs are always found in redundant pairs.

ENERGY STORAGE ASSEMBLY - stores, conditions, controls and

distributes electrical power produced by solar arrays.

151 BATTERY CHARGE/DISCHARGE UNIT (BCDU)

-controls charge and discharge rates of the battery packs. In

conjunction with commands from the PVSC, measures and compares

parameters and adjusts the charge rates to match the target

charge rate values given by the PVSC. It regulates current flow

to the battery and boosts battery voltage to the level of the DC

bus voltage. It isolates the battery pack from both the

charge/discharge unit and the control power bus to protect the

batteries against downstream faults. It consists of a battery

controller, charge regulator, discharge regulator and DC fault

interrupters and DC cables. One BCDU is found with every three

battery packs. Peak power output is 6.5 kw.

152 NiH 2 BATTERY PACK

-meets all energy requirements for the station, including

safety, performance commonality and modularity. It is a nickel

hydrogen rechargeable battery consisting of thirty 81 A-hr cells

in series.

4.6

401 ALPHA GIMBAL

-provides solar array and SD pointing on the alpha axis. It

allows for passage across its assembly for data and electrical

energy. It is not a part of the PV module.

4.7

SOLAR DYNAMIC MODULE (SD)

CONCENTRATOR ASSEMBLY - acquires and concentrates radiation into
receiver.

201 REFLECTIVE SURFACE SUBASSEMBLY

-offset parabolic design of 19 hexagonal truss panels of

lightweight graphite epoxy construction with multiple triangular

reflective facets mounted in the hexes. It reflects incoming

solar radiation through the dynamic receiver aperture.

202 CONCENTRATOR STRUCTURE STRUT SET

-provides framework to provide a fixed reference distance

between the reflector vertex and the receiver aperture and firmly

supports the reflector.

203 CONCENTRATOR CONTROLS CABLE SET

-provides connections within the concentrator for commands

and data.

204

2O5

206

SUN SENSOR

ISOLATION METER

TWO-AXIS FINE-POINTING MECHANISM

-provides vernier-poinitng capability and acts as the

structural transition between the interface structure a_d

reflector support strut set.

HEAT REJECTION ASSEMBLY - acquires and transfers excess heat

waste from SD module and rejects it to space so as to maintain

appropriate SD module component and electrical equipment within

required temperature limits during active modules operation.

4.8

211 RADIATOR PANEL DEPLOYMENT SUBASSEMBLY

-provides the heat rejection function for SD module by

radiating heat into space. It consists of eight panels, a

deployment mechanism and the support structure.

212 HOT INTERCONNECT LINES

-fluid lines with disconnectsthat provide the flow path

between the power control unit (PCU) assembly and the radiator

array subassembly. Two pairs of lines exist.

213 COLD INTERCONNECT LINES

-two pairs of fluid lines with disconnects that provide the

flow path between the SD utility plate and the PCU assembly.

214 PUMP INTERCONNECT LINES

-fluid lines with disconnects that provide the flow path

between the radiator array subassembly and the fluid management

units. Two pairs of lines exist.

215 UTILITY PLATE

-contains electronics cooling cold plate, thermal interface

with electronics ORUs and fluid interfaces with other coolant

management subassembly ORUs and fluid interfaces with other

coolant management subassembly ORUs. Under all operating

conditions the utility plate coolant outlet temperature remains

less than 20 C.

216 FLUID MANAGEMENT UNIT

-contains all of the active components for each loop of the

closed Brayton cycle (CBC) heat rejection assembly.

4.9

RECEIVER/POWER CONTROL UNIT (PCU) - make up the power generation

subsystem. It exchanges heat from the heat source, stores

thermal energy and converts thermal energy in the cycle working

fluid to electrical energy.

221 RECEIVER

-admits concentrated solar flux through its aperture. It

consists of 82 tubes carrying the working fluid that absorbs the

solar energy. It serves as the heat source exchanger and thermal

energy storage device for the SD module.

222 ENGINE CONTROLLER

-controls operation of the PCU.

223 PARASITIC LOAD RADIATOR

-performs the function of an electrical sink for excess

power. It provides effective speed control for the turbo-

alternator rotor while managing the excess power in a way that

allows fast response to changes in user demand.

224 CONTROL VALVE ACTUATOR

-provides a closed center, three-way diverter valve designit

isolates the accumulator from the compressor allowing pressure to

be stored until needed for peak power operation.

225 PCU POWER CABLE SET

-provides power connections from within and from the PCU.

226 PCU SIGNAL/DATA CABLE SET

-provides data and signal connections within the PCU.

ELECTRICAL EQUIPMENT ASSEMBLY - containd most of the major

electric components required to operate and control the SD module

and electric power it generates.

4.10

231 FREQUENCY CHANGER

-solid state power electronic component which converts the

mid-frequency, 3-phase AC power from the SD alternator at its

output to 20 kHz single phase as power at its output for

transmission to the SD module/PV module interface.

232 LINEAR ACTUATOR OUTER

-in conjunction with the inner linear actuator translates and

rotates the reflective surface subassembly independently of the

receiver/PCU assemblies resulting in a low gimbalad mass and

modest coarse and fine-pointing parasitic power requirements.

233 LINEAR ACTUATOR INNER

-in conjunction with the outer linear actuator translates and

rotates the reflective surface subassembly independently of the

receiver/PCU assemblies resulting in a low gimbalad mass and

modest coarse and fine-pointing parasitic power requirements.

234 SD CONTROLLER

-controls the total operation of the SD module, excluding the

PCU operations. It includes controls for concentrator pointing,

beta gimball pointing, radiator deployment/retraction, fluid

pumps and overall SD supervisory control.

BETA GIMBAL ASSEMBLY - accounts for the seasonal motion of the

sun and procession of the orbit plane, the beta gimbal rotates
the the SD module a nominal +52 degrees about the beta axis.

4.11

241 GIMBAL POWER/DATA TRANSFER SUBASSEMBLY

-delivers electric power from the electrical equipment

assemblies (output from the frequency changer) and data signals

from the SD module controller, across the rotating interface to

be delivered to and received from the PV module.

242 GIMBAL BEARING SUBASSEMBLY

-provides the structural path between the power generation

device and the transition structure while allowing for rotation

for orientation to the sun. It consists of a pair of bearings,

wing gear and housings.

243 GIMBAL DRIVE MOTOR

-controls the position, velocity and acceleration of the beta

gimbal. It provides control commands to the beta gimbal drive

motors. It provides the position of the beta gimbal, drive motor

status and health monitoring status to the SD controller. It

provides torque to point and slew the attached power generation

device.

244 STATION GIMBAL TRANSITION STRUCTURE

-positions the beta gimbal within the 5-meter truss so that

it is centered within an outboard face of the 5-meter cube and

positioned into the cube interior to allow for proper clearance

of the interface structure assembly with the transverse boom.

4.12

INTERFACE STRUCTURE/INTEGRATION HARDWARE -

251 INTERFACE STRUCTURE ASSEMBLY

-high rigidity interface structure to which all other SD

module assemblies are ultimately attached. It supports the

receiver assembly, the PCU assembly and the Heat Rejection

assembly as well as the SD equipment box subassembly. It provides

part of the interface between the Receiver/PCU/Heat rejection

assemblies launch package and the shuttle.

252 SD CABLE SET

-conducts 20kHz AC, single phase power from the output of the

frequency changer in the SD module to intermediate control

equipment such as an RBI and from there to the SD module/PV

module interface.

4.13

POWER MANAGEMENT AND DISTRIBUTION MODULE (PMAD)

301 MAIN BUS SWITCHING UNIT (MBSU)

-serves as the primary tie tie point for utility power feeder

protection and supplies utility power to the distribution system.

It turns internal RBIs on and off under normal operation and

interrupts faults and reconfigures the system as necessary. MBSUs

are always found in redundant pairs.

302 POWER MANAGEMENT CONTROLLER (PMC)

-primary controller of PMAD system. It provides overall power

system coordination and EPS data flow. It is the interface

between the power system and the data management system network

and interfaces with subordinate controllers via the PMAD control

bus. It conducts built-in test functions. It controls functions for

power distribution system coordination and monitoring of power

generation system. It has data management/communications

functions with external systems and ground to include providing

DMS with specific power system data that has been received from

the lower level control processors and actual sensor data. It

coordinates and commands the lower level control processors in

order to provide users power.

303 AC/DC CONTROL UNIT (ADCU)

-converts AC power to DC power.

304 POWER DISTRIBUTION CONTROL UNIT (PDCU)

-serves as the final distribution point to all user loads.

4.14

ATTACHMENT 5

Special Connection Blocks

There are some special block connections useful in developing the RBDs ot

engineering systems, for example the space station freedom power systems. First,

there are two types of modified parallel connections as illustrated below:

J
_y

1) Normal parallel connection:

(1-out--of-n)

Power W is delivered to Y if at

least one of n units AI ,A, works

2) Partitioned parallel connection:

3) k-out-of-n parallel connection:

kW
Power ---fi---is delivered to Y

if k units of the n units

AI,...,An work

Power W is delivered to Y

if at least k units of the n

units A1, ... , An work. No

power is delivered to Y

otherwise.

Secondly, the failure characteristics of some primitive blocks depend not only

on their own failure characteristics, but are conditionally dependent on other

primitive blocks. Special computational rules are provided to account for this

dependency.

The third type of special connection is the partitioned series connection.

This structure arises subsequent to the simplification of a partitioned parallel

connection. The output delivered by a component in this connection depends not

only on its own failure characteristics but also in the preceding partitioned parallel

connection.
5.1

ATTACHMENT 6

Functions and Features of FAULTS

There are five main functions in FAULTS • Build; Reliability Analysis; Power

Flow Analysis; Training; and Fault Detection and Diagnosis.

Build is the function of SYSTEM BUILDER described in the report. It allows

the user to construct a complex system by providing (i) a list of primitive blocks along

with their reliability, operating states, and input-output descriptions, and (ii) a list of

customized block connections (if any) together with the corresponding computation
rules. The user can then create blocks atdifferent levels of aggregation by specifying

primitive and/or previously created bloc_ to be used and the type of connection

required. Once created, each block can be stored in a library so that it can be used to

create other blocks. Auxiliary functions suda as MODIFY, ADD, and DELETE add

power and flexibility to the system building capability by allowing the contents and

characteristics of the created blocks to be modified, enhanced or deleted when needed.

Power Flow Analysis is one of the two main functions of RPFSim. It allows

power levels at any ORUs, subassemblies, assemblies, or the whole system to be

computed for any input conditions, operating states of ORUs, and input-output

relationships. Essentially any form of input-output model for each ORU, subassembly,
and assembly can be entered including simple efficiency models (e.g. output = efficiency

* input), function/logical models (e.g. output --- f,(eff, input) in sunlight cycle and =

fc(eff, input) in eclipse cycle), and arbitrary dynamic models.

Reliability Analysis is the other main function of RPFSim, which is used to

compute reliability measures for any part of the system in terms of power delivered. In

particular, when combined with Power Flow Analysis to form RPFSim, the following can
generated: (i) the probability that a given level of power (measured in terms percentage

of maximum deliverable power level) will be delivered by the system or to a particular
unit in the system at a given time; and (ii) the power profile (delivered power v.s. time)

during a time period of interest for any given scenario concerning component failures

and repair. Both these results can be displayed in tabulated or graphical forms.

RPFSim and SYSTEM BUILDER together allow extensive %vhat-if' experiments

to be performed to examine the effects of system configurations, reliability parameter

specifications of components, and input/output characteristics of the components on the

overall reliability performance of the system. The ability to quickly and easily

accommodate changes and reconfigure the system is deemed as a key criterion in

designing FAULTS, particularly if it is to be used as a system design tool.

6.1

Training is a function that allows the system to learn about common and novel

faults from data generated from RPFSim and expert knowledge (rules), if available.

Single mode and multimode faults can be handled. At the end of each training session,

recognizable patterns of faults are identified. In the current implementation, a self

organizing (memory) network is used _ a training tool, and data generated from

RPFSim (model-based) is the main trainin--g set. If in the future, rules and other forms

of qualitative information are available, the fault patterns identifier/trainer should be

upgraded. For example, rules or expert knowledge might be used to assist the weight

adjustment scheme in the self organizing network algorithms to identify clusters more

efficiently and effectively.

Fault Detection and Diagnosis uses results from Training in combination with

expert knowledge to detect and diagnose faults corresponding to a given set of observed
sensor measurements. The data fusion scheme used is a simple evidence weighing

procedure: First, the degree of membership (of the observed set of sensor readings) to

each cluster is computed. Only clusters with high degrees of membership (i.e. most

similar to the observed data) are maintained, and fault patterns typifying those clusters

are considered further. This helps narrow down the scope of search. Second, a fault

index associated with each retained fault pattern is computed by multiplying the

likelihood (reliability) of that pattern to the distance from the observed data to that

pattern. The smaller the index, the more likely that faults in the system giving rise to
the observed data are characterized by that particular fault pattern. Thus, possible faults

can be ranked according to their fault indices. Other data fusion schemes such as

Dempster-Shafer theory of evidence, Bayesian rules, and fuzzy logic could be

investigated in future work.

To illustrate, we will show how to build and analyze the following subsystem

representing one wing of the Solar Array Assembly in the power system of Space

Station Freedom.

A through G represent the primitive units (ORUs). ORUs A and B are

connected through a partitioned parallel connection to form a subassembly, while 2

ORUs of type F are connected in parallel to form another subassembly. These two

assemblies are connected in series with C, D, E, and G to form a Solar Array Assembly.

6.2

Two Solar Array Assemblies are then connected in parallel to form a Solar Array Wing

as shown in the diagram.

On activating the system and select POWER SYSTEM option from the system

menu, the following menu will appear:

MAIN MENU

1. Component Menu

2. Power Flow Simulation

3. System Diagnosis

4. Maintenance Policy

5. File Menu

6. Display Defaults

7. Clean Graphic Panes

8. Clean Simulation Pane

9. Exit

BUILD

In the BUILD mode, ORUs A through G have to be individually entered as

primitive blocks, each block with its own reliability description (e.g. MTBF and

operating states) and a power input-output description. For example, to create "A",

choose "Component Menu" and then choose "Add". The following pop-up window will

appear:

COMPONENT WINDOW

Name:

M'rBr:(hr.)
Normal Output:

Faulted Output:

Display
Label:

Length: (pixels)

Width; (pixels)
Color:

Operating Condition:

Power Input:

Power Output:

System Type:

List of Subcomponents:

TOP LEVEL for Graphics?

for Reliability?.

for Power Flow?

A

87000

(0.9995 *)
(0.17 *)

A

30

18

Green

Normal

77.3081

77.2695

nil

nil

YES NO

YES NO

YES NO

6.3

"Name" is the name of the block to be listed in the library for general reference

(e.g. A or Battery A); "MTBF" is the mean-time-between-failure of the block in hours

(if the block represents an ORU, enter the designed MTBF, otherwise either leave it

blank or fill the MTBF for the whole block if known.); "Normal Output" is the output

level as a function of input (input-output relationship) if the block is operating in the

normal mode (expressed in KW for power generating blocks such as solar array and

battery, and possibly as a fraction of the input power for other blocks such as in the

above example where Normal Output = 0.9995*Input); "Faulted Output" is the output

level if the block is operating in the faulted mode; "Display" items define the desired

label, dimensions and color of the screen display of the block; "Operating Conditions" is

the simulated operating scenario of the block (e.g. normal until the 8th hour and fully

repaired or replaced at the 9th hour); "Power Input" is the power level at the input side

of the block (leave blank, if the user does not know); "Power Output" is the power level

at the output side of the block (leave blank, if the user does not know); "System Type"

represents the connection type if the block has subcomponents (type "nil" if no

subcomponent); and "List of Subcomponents" is a list of subcomponents of the block if

any (type "nil" if no subcomponent). The bottom part of the window will be described
later.

The process is repeated for each primitive unit (A to G) and the results stored in

the library of components for further use. Now the subassemblies A-B and F-F can be

created. For example, to create A-B, again the "Add" command is selected from the

menu in "Component Menu". The same pop-up window appears. The name "Battery

Pack" and label "A-B" might be entered for the "Name" and "Label', respectively. No

entries are needed for the "MTBF _ through _Power OutpuP as these will be

automatically determined from the subcomponents and the interconnection structure. To

enter subcommponents, first specify the "Partitioned ParalleP connection type in

"System Type", then activate "List of Subcomponents" (by a mouse) to show a list of

names and blocks already created. Subcomponents A and B can be selected from the

list by highlighting the desired components using a mouse. Subassembly A-B is then

formed and stored in the library of components. The process is repeated for

subassembly F-F.

Next, the Solar Array Assembly is created by activating the "Add" command from

the "Component Menu', entering the term "Solar Array Assembly" as the assembly name

and/or label, and activating the "List of Subcomponents" command from the same

window. Blocks A-B, C, D, E, F-F and G are then selected from the displayed list of

created components. Finally the series connection is specified in the "System Type" slot.

A block for Solar Array Assembly has now been created and stored. The complete

Solar Array Wing can now be created by again using the "Add" command from the

"Component Menu', using the "List of Subcomponents" command to select Solar Array

Assembly twice as subcomponents, and specifying the parallel connection in "System

6.4

Type" as the connection between the two subcomponents.This completes the building of

the Solar Array Wing as shown in the diagram.

Other commands in the "Component Menu" are "Modify", "Copy", "Remove",

"Display", "Power Flow" and "Reliability". By using the "Modify" command, a created

block can be modified by adding or deleting subcomponents and/or modifying the

reliability description and input-output description. For example, suppose Block A is to

be modified to include subcomponents as shown in the diagram below.

First, build the primitive blocks al through a6 and the combined blocks al-a2

and a3-a4-a5 using the "Add" command as before. Then choose the "Modify" command,

and specify Block A as the block to be modified. The component window similar to the

one shown earlier now appears. Choose the "Add Component" command from the

window and select blocks al-a2, a3-a4-a5, and a6 from the component library, and

finally select the series connection from the list of available connection types. Block A

has now been modified and all other blocks containing A as a subcomponent will also

be automatically modified accordingly.

The "Copy" command is used to copy a block for use in another pan of the

system. The "Remove" command is used to remove any created block. And the "Display"

command is used to display a created block.

By activating appropriate commands at the bottom of the component window, a

block that contains subcomponents can be displayed or analyzed at the TOP level as a

single block or at a lower level as interconnections of subcomponents.

ANALYSIS

The "Power Flow" and _Reliability" commands in the "Component Menu" are for

performing "single event" simulation on reliability and power flow for a selected block.

(Multiple events and more complex scenarios for simulation are handled through

commands in the "Power Flow Simulation" option activated from the MAIN MENU).

6.5

For reliability analysis, upon choosing the "Reliability" command, the following

window appears:

RELIABILITY WINDOW

System Name: Solar Array Wing
Time: 8700

Display: PRINT PLOT BAR
Interval Between Points 10

Refresh Previous Graphics Screen YES NO
Line Color to Use: red

The user enters the name of the system (a block from the library of components)

to be analyzed, and the time in hours at which the reliability of the system is to be

computed. The user will also choose whether to display the results in a tabulated form

(PRINT), an exceedence probability plot (PLOT), or a bar chart (BAR). If the PLOT

option is selected, the user can also choose whether to remove old plots before a new

line is plotted (YES). If user chooses to plot a new line without erasing the old lines

(NO), they can also choose a color for th_e new line.

The idealized results would consist of the probability value for each discrete

power level deliverable by the system. For a system consisting of many components and

subcomponents, the number of possible discrete power levels would be large. To

simplify the computation, display, and data storage requirements, an approximation is

made to limit the maximum number of discrete power levels analyzed for each system.

The approximation is based on aggregating several successive points (power levels) into

a single point. The number of points to be aggregated is specified by the user by

entering the desired "Interval Between Points". The user can also specify the absolute

maximum number of power levels to be considered by specifying the "Maximum List

Size".

For the power analysis, the following window appears once the "Power How"

command is activated from the "Component Menu".

POWER FLOW WINDOW

System Name:

Power Input:
Illumination:

Load:

SoLar Array Wing
77.3081

(Sunlight or Eclipse)

(Peak or Reduced)

6.6

Again the user enters the name of the system to be analyzed and the input

power level to the system. The user also selects the illumination cycle (sunlight or

eclipse) to analyze and the load level (peak or reduced) to the system. The average

power delivered to various components and subcomponents of the system as well as to

the load are then computed and displayed.

Finally, dynamic power flow under various operating states of components and

subcomponents can be simulated using the "Power Flow Simulation" command from the

MAIN MENU. Upon selecting a particular system to be analyzed and activating the

command, the following window appears.

POWER FLOW SIMULATION _NDOW

Choose Events:

Clear Past Events:

Run Simulation:

Display Results:

The "Choose Events" command allows contingencies (failure/recovery scenarios)

to be developed for simulation. A typical scenario may read: Component A fails at the

h hour and is fully repaired at the t2 hour; Component B fails at the t3 hour etc. Events

from the created scenarios can be deleted by using the "Clear Past Events" command.

Once an acceptable contingency scenario is created, the simulation can be executed

using the "Run Simulation" command, and the results displayed using the "Display

Results" command. Results which show the output power v.s. time can be displayed in

either tabular or graphical form.

In addition to defining simulation scenarios by using "Choose Events" to specify

events to be simulated, maintenance and replacement policies can also be incorporated

as part of those scenarios. This is done through the "Maintenance Policy" command in

the MAIN MENU. When the command is activated, the following menu appears.

MAINTENANCE POLICY WINDOW

Choose
Remove

Display

The "Choose" command allows the user to select a component or subsystem and

describe (in LISP) the maintenance and replacement scenario to be associated with that

component/system. A typical maintenance/replacement scenario may read: If

component A is older than 2 years old, do maintenance and upgrade work so that it

6.7

looks like new etc. The "Remove" command is used to delete a selected maintenance

and replacement scenario already entered. The "Display" command gives the list of all

components having maintenance and replacement scenarios defined.

SYSTEM DIAGNOSTIC

This is where the training and fault detection and diagnosis functions are

performed. However, although all features have been performed and included in the

demonstration, the current version is not yet suitable for implementation. Not every

piece is fully developed and not all pieces are tied together. To use this feature, the

user will specify the system or subsystem to be investigated, a list of sensors, the current

sensor readings to be analyzed, and any fault patterns known to the user. Additional

information required are the sensor readings under normal operating conditions, and

additional list of known fault patterns. The first type of information could be generated

by running the system using "Power Flow Simulation" with all components operating at

the normal states (however, in this version, the results has to be transferred to this

function manually.) The knowledge base of verified fault patterns can be generated (off-

line) from simulated data and the resul_ kept in a separate file. The result will then be

manually transferred to this function to perform the final diagnosis task.

We end this attachment with a brief description of other options in the MAIN MENU.

FILE MENU: When activated, the following menu appears.

FILE MENU

Component Files
Simulation Data Files

System Defaults

Graphics

The "Component Files" command is used to READ (LOAD) or WRITE (SAVE)

files describing components and subsystems created by the BUILD function described

above.

The "Simulation Data Files" command is used to READ (LOAD) or WRITE

(SAVE) simulated data files generated using the "Reliability", "Power Flow", and "Power

Flow Simulation" commands.

The "System Defaults" command is used to define/modify all default attributes

for FAULTS other than graphics display.

6.8

The "Graphics" command is used to define/modify (and save) defaults for graphic

display. The following window shows typical default values used:

X distance between components

Y distance between components

Starting X location for Display

Starting Y location for Display

Width of connecting lines

Graphic Screen Background

Graphic Screen Foreground

Lisp-Listener-Background

Lisp-Listener-Foreground

Menu-Pane-Background

Menu-Pane-Foreground
Parallel Connection Colors:

Redundant Parallel

Partitioned Parallel

k-of-n parallel

Series Connection Color

4 (pixels)

12 (pixels)

25 (pixels)

280 (pixels)

2 (pixels)

Black

Yellow

75% Gray
White

White

Blue

Green

Red

Blue

Green

DISPLAY DEFAULTS:

This command performs the same function as the "Graphics" command in the

FILE MENU option.

CLEAN GRAPHIC PANE:

This is used to clear the screen

CLEAR:

This is used to clear LISP window.

EXIT:

This is used to exit the program.

6.9

